AIé§åã®æè³ã»ååŒã·ã¹ãã ã®èšèšãæ§ç¯ãå±éã«é¢ããå æ¬çãªã¬ã€ããã°ããŒãã«åžå Žã®èæ ®äºé ãšãªã¹ã¯ç®¡çã«çŠç¹ãåœãŠãŠããŸãã
AIæè³ã»ååŒã·ã¹ãã ã®æ§ç¯ïŒã°ããŒãã«ãªèŠç¹
éèã®äžçã¯ãç¹ã«äººå·¥ç¥èœïŒAIïŒã®åéã«ãããæè¡ã®é²æ©ã«çœåŒãããæ¥éã«é²åããŠããŸããAIãæŽ»çšããæè³ã»ååŒã·ã¹ãã ã¯ããã¯ã倧æã®ãããžãã¡ã³ãã ãã®é åã§ã¯ãªããäžçäžã®ããå¹ åºãæè³å®¶ããã¬ãŒããŒã«ãšã£ãŠããŸããŸãã¢ã¯ã»ã¹ãããããªã£ãŠããŸãããã®å æ¬çãªã¬ã€ãã§ã¯ãAIæè³ã»ååŒã·ã¹ãã ã®æ§ç¯ã«ãããäž»èŠãªåŽé¢ãæ¢æ±ãã倿§ãªã°ããŒãã«åžå Žãããã²ãŒãããé¢é£ãããªã¹ã¯ã管çããããã®èæ ®äºé ã«çŠç¹ãåœãŠãŸãã
1. åºæ¬ã®çè§£ïŒAIãšéèåžå Ž
AIååŒã·ã¹ãã ã®æ§ç¯ã®å®è·µã«å ¥ãåã«ãåºæ¬çãªæŠå¿µããã£ãããšçè§£ããããšãäžå¯æ¬ ã§ããããã«ã¯ãã³ã¢AIæè¡ãšéèåžå Žã®ç¹å®ã®ç¹æ§ãžã®ç²Ÿéãå«ãŸããŸãããããã®åºç€çèŠçŽ ãç¡èŠãããšãäžåã®ããã¢ãã«ãè²§åŒ±ãªæè³ææã«ã€ãªããå¯èœæ§ããããŸãã
1.1. éèã®ããã®ã³ã¢AIæè¡
- æ©æ¢°åŠç¿ïŒMLïŒïŒ MLã¢ã«ãŽãªãºã ã¯ãæç€ºçãªããã°ã©ãã³ã°ãªãã«ããŒã¿ããåŠç¿ããŸããéèã§äžè¬çã«äœ¿çšãããæè¡ã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- æåž«ããåŠç¿ïŒ æ¢ç¥ã®ããŒã¿ã§ãã¬ãŒãã³ã°ãããã¢ã«ãŽãªãºã ãå°æ¥ã®çµæãäºæž¬ããŸããäŸãšããŠã¯ãéå»ã®ããŒã¿ãšãã¥ãŒã¹ã®ã»ã³ãã¡ã³ãã«åºã¥ããæ ªäŸ¡ã®äºæž¬ããããŸãã
- æåž«ãªãåŠç¿ïŒ ã©ãã«ä»ããããŠããªãããŒã¿å ã®ãã¿ãŒã³ãšæ§é ãç¹å®ããã¢ã«ãŽãªãºã ãäŸãšããŠã¯ãçžé¢ã«åºã¥ããŠæ ªåŒãã¯ã©ã¹ã¿ãªã³ã°ããããååŒæŽ»åã®ç°åžžãæ€åºãããããããšãæããããŸãã
- 匷ååŠç¿ïŒ 詊è¡é¯èª€ãéããŠæé©ãªæ±ºå®ãè¡ãããšãåŠç¿ããã¢ã«ãŽãªãºã ãè¡åã«å¯ŸããŠå ±é ¬ãŸãã¯çœ°åãåãåããŸããäŸãšããŠã¯ãå©çãæå€§åãæå€±ãæå°åããååŒæŠç¥ã®éçºããããŸãã
- ãã£ãŒãã©ãŒãã³ã°ïŒ è€æ°ã®å±€ãæã€äººå·¥ãã¥ãŒã©ã«ãããã¯ãŒã¯ã䜿çšããŠãè€éãªé¢ä¿ãæã€ããŒã¿ãåæããæ©æ¢°åŠç¿ã®ãµãã»ããã§ãããã¥ãŒã¹èšäºã財åå ±åãªã©ã®ããã¹ãããŒã¿ã®åæã«åœ¹ç«ã¡ãŸãã
- èªç¶èšèªåŠçïŒNLPïŒïŒ NLPã¯ãã³ã³ãã¥ãŒã¿ãŒã人éã®èšèªãçè§£ãåŠçã§ããããã«ããŸããéèã§ã¯ãNLPã¯ãã¥ãŒã¹èšäºããœãŒã·ã£ã«ã¡ãã£ã¢ãã£ãŒãã財åå ±åæžãåæããŠã»ã³ãã¡ã³ããšæŽå¯ãæœåºããããã«äœ¿çšãããŸããããšãã°ãç¹å®ã®äŒæ¥ã«é¢ãããã¥ãŒã¹ã®èŠåºããåæããŠæ ªäŸ¡ããã©ãŒãã³ã¹ãäºæž¬ããããšã§ãã
- æç³»ååæïŒ å³å¯ã«ã¯AIã§ã¯ãããŸããããæç³»ååæã¯ãæ ªäŸ¡ãçµæžææšãªã©ã®æéçµéã«äŒŽãã·ãŒã±ã·ã£ã«ãªããŒã¿ãã€ã³ããåæããããã®éèŠãªçµ±èšæè¡ã§ããå€ãã®AIååŒã·ã¹ãã ã¯ããã¬ã³ããšãã¿ãŒã³ãç¹å®ããããã«æç³»ååæãçµã¿èŸŒãã§ããŸããæè¡ã«ã¯ARIMAãææ°å¹³æ»åãã«ã«ãã³ãã£ã«ã¿ãªã³ã°ãå«ãŸããŸãã
1.2. ã°ããŒãã«éèåžå Žã®ç¹æ§
ã°ããŒãã«éèåžå Žã¯è€éã§ãã€ãããã¯ã§ããã以äžã®ãããªç¹åŸŽããããŸãïŒ
- é«ããã©ãã£ãªãã£ïŒ çµæžãã¥ãŒã¹ãæ¿æ²»ã€ãã³ããæè³å®¶ã»ã³ãã¡ã³ããªã©ãããŸããŸãªèŠå ã«ããäŸ¡æ Œã¯æ¥éã«å€åããå¯èœæ§ããããŸãã
- ãã€ãºïŒ é¢é£æ§ã®ãªãããŸãã¯èª€è§£ãæãæ å ±ãããªãã®éååšããåºç€ãšãªããã¬ã³ããäžæçã«ããå¯èœæ§ããããŸãã
- éå®åžžæ§ïŒ éèããŒã¿ã®çµ±èšçç¹æ§ã¯æéãšãšãã«å€åãããããå°æ¥ã®ããŒã¿ã«ããæ±åããã¢ãã«ãæ§ç¯ããããšãå°é£ã«ãªããŸãã
- çžäºäŸåæ§ïŒ ã°ããŒãã«åžå Žã¯çžäºã«æ¥ç¶ãããŠãããããå°åã®ã€ãã³ããä»ã®å°åã®åžå Žã«åœ±é¿ãäžããå¯èœæ§ããããŸããããšãã°ãç±³åœéå©ã®å€åã¯æ°èåžå Žã«åœ±é¿ãäžããå¯èœæ§ããããŸãã
- èŠå¶ã®éãïŒ ååœã«ã¯éèåžå ŽãèŠå¶ããç¬èªã®èŠå¶ããããååŒæŠç¥ããªã¹ã¯ç®¡çã«åœ±é¿ãäžããå¯èœæ§ããããŸãããããã®èŠå¶ãçè§£ããããšã¯ãã°ããŒãã«AIååŒã·ã¹ãã ã«ãšã£ãŠéèŠã§ããããšãã°ã欧å·ã®MiFID IIãç±³åœã®ãããã»ãã©ã³ã¯æ³ãªã©ã§ãã
2. ããŒã¿ååŸãšååŠçïŒAIæåã®åºç€
ããŒã¿ã®è³ªãšå¯çšæ§ã¯ãããããAIæè³ã»ååŒã·ã¹ãã ã®æåã«äžå¯æ¬ ã§ããããŽããå ¥ããã°ãŽããåºãŠããããšããååã¯ãAIã®æèã§ã¯ç¹ã«åœãŠã¯ãŸããŸãããã®ã»ã¯ã·ã§ã³ã§ã¯ãããŒã¿ååŸãã¯ãªãŒãã³ã°ãç¹åŸŽéãšã³ãžãã¢ãªã³ã°ã®éèŠãªåŽé¢ãã«ããŒããŸãã
2.1. ããŒã¿ãœãŒã¹
AIååŒã·ã¹ãã ããã¬ãŒãã³ã°ããã³æ€èšŒããããã«ãããŸããŸãªããŒã¿ãœãŒã¹ã䜿çšã§ããŸããããã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- éå»ã®åžå ŽããŒã¿ïŒ éå»ã®äŸ¡æ Œãåºæ¥é«ããã®ä»ã®åžå ŽããŒã¿ã¯ãã¢ãã«ã«ãã¿ãŒã³ãåŠç¿ãããå°æ¥ã®åããäºæž¬ãããããã«äžå¯æ¬ ã§ãããããã€ããŒã«ã¯RefinitivãBloombergãAlpha Vantageãªã©ããããŸãã
- ãã¡ã³ãã¡ã³ã¿ã«ããŒã¿ïŒ 財åè«žè¡šãæ±ºç®å ±åæžããã®ä»ã®ãã¡ã³ãã¡ã³ã¿ã«ããŒã¿ã¯ãäŒæ¥ã®è²¡åå¥å šæ§ã«é¢ããæŽå¯ãæäŸããŸãããããã€ããŒã«ã¯FactSetãS&P Capital IQãReutersãªã©ããããŸãã
- ãã¥ãŒã¹ããã³ã»ã³ãã¡ã³ãããŒã¿ïŒ ãã¥ãŒã¹èšäºããœãŒã·ã£ã«ã¡ãã£ã¢ãã£ãŒãããã®ä»ã®ããã¹ãããŒã¿ã¯ãæè³å®¶ã»ã³ãã¡ã³ããæž¬å®ããåžå Žãåããå¯èœæ§ã®ããã€ãã³ããç¹å®ããããã«äœ¿çšã§ããŸãããããã€ããŒã«ã¯RavenPackãNewsAPIããœãŒã·ã£ã«ã¡ãã£ã¢APIãªã©ããããŸãã
- çµæžææšïŒ GDPæé·çãã€ã³ãã¬çã倱æ¥çãªã©ã®çµæžææšã¯ãçµæžå šäœã®å¥å šæ§ãšéèåžå Žãžã®åœ±é¿ã«é¢ããæŽå¯ãæäŸã§ããŸããããŒã¿ãœãŒã¹ã«ã¯äžçéè¡ãåœéé貚åºéïŒIMFïŒãååœã®çµ±èšæ©é¢ãªã©ããããŸãã
- ãªã«ã¿ããã£ãããŒã¿ïŒ å°å£²é§è»å Žã®è¡æç»åãã¯ã¬ãžããã«ãŒãååŒããŒã¿ãªã©ã®éäŒçµ±çãªããŒã¿ãœãŒã¹ã¯ãäŒæ¥æ¥çžŸãæ¶è²»è è¡åã«é¢ããç¬èªã®æŽå¯ãæäŸã§ããŸãã
2.2. ããŒã¿ã¯ãªãŒãã³ã°ãšååŠç
çã®ããŒã¿ã¯ãäžå®å šãäžè²«æ§ããªãããã€ãºãå€ãããšããããããŸããAIã¢ãã«ã«ããŒã¿ãåã蟌ãåã«ãããŒã¿ã®ã¯ãªãŒãã³ã°ãšååŠçãè¡ãããšãäžå¯æ¬ ã§ããäžè¬çãªããŒã¿ã¯ãªãŒãã³ã°ãšååŠçã®ã¹ãããã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- æ¬ æå€ã®åŠçïŒ æ¬ æå€ã¯ãå¹³åå€è£å®ãäžå€®å€è£å®ãKæè¿åè£å®ãªã©ã®ããŸããŸãªæè¡ã䜿çšããŠè£å®ã§ããŸãã
- å€ãå€ã®åé€ïŒ å€ãå€ã¯ãçµ±èšåæãæ©æ¢°åŠç¿ã¢ãã«ã®çµæãæªããå¯èœæ§ããããŸããå€ãå€ã¯ãååäœç¯å²ïŒIQRïŒæ³ãZã¹ã³ã¢æ³ãªã©ã®ããŸããŸãªæè¡ã䜿çšããŠç¹å®ããã³åé€ã§ããŸãã
- ããŒã¿ã®æ£èŠåãšæšæºåïŒ ããŒã¿ãç¹å®ã®ç¯å²ïŒäŸïŒ0ã1ïŒã«æ£èŠåããããå¹³å0ãæšæºåå·®1ã«ãªãããã«æšæºåãããããããšã§ãäžéšã®æ©æ¢°åŠç¿ã¢ã«ãŽãªãºã ã®ããã©ãŒãã³ã¹ãåäžãããããšãã§ããŸãã
- ç¹åŸŽéãšã³ãžãã¢ãªã³ã°ïŒ æ¢åã®ããŒã¿ããæ°ããç¹åŸŽéãäœæããããšã§ãAIã¢ãã«ã®äºæž¬èœåãåäžãããããšãã§ããŸããããšãã°ãéå»ã®äŸ¡æ ŒããŒã¿ããç§»åå¹³åãçžå¯Ÿåææ°ïŒRSIïŒãMACDãªã©ã®ãã¯ãã«ã«ææšãäœæããããšã§ãã
- ã¿ã€ã ãŸãŒã³ãšé貚æç®ã®åŠçïŒ ã°ããŒãã«åžå ŽããŒã¿ãæ±ãéã¯ããšã©ãŒããã€ã¢ã¹ãåé¿ããããã«ãã¿ã€ã ãŸãŒã³ã®éããšé貚æç®ãæ£ç¢ºã«åŠçããããšãäžå¯æ¬ ã§ãã
3. AIã¢ãã«ã®æ§ç¯ãšãã¬ãŒãã³ã°ïŒå®è·µçãªã¢ãããŒã
ã¯ãªãŒã³ã§ååŠçãããããŒã¿ãæã«å ¥ã£ãããæ¬¡ã®ã¹ãããã¯ãååŒæ©äŒãç¹å®ããããã®AIã¢ãã«ãæ§ç¯ããŠãã¬ãŒãã³ã°ããããšã§ãããã®ã»ã¯ã·ã§ã³ã§ã¯ãã¢ãã«éžæããã¬ãŒãã³ã°ãæ€èšŒã«é¢ããäž»èŠãªèæ ®äºé ãã«ããŒããŸãã
3.1. ã¢ãã«éžæ
AIã¢ãã«ã®éžæã¯ãç¹å®ã®ååŒæŠç¥ãšããŒã¿ã®ç¹æ§ã«äŸåããŸãã人æ°ã®ããã¢ãã«ã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- ç·åœ¢ååž°ïŒ é£ç¶å€æ°ãäºæž¬ããããã®ãã·ã³ãã«ã§åºã䜿çšãããŠããã¢ãã«ãæ ªäŸ¡ããã®ä»ã®éèæç³»åã®äºæž¬ã«é©ããŠããŸãã
- ããžã¹ãã£ãã¯ååž°ïŒ äºé çµæïŒæ ªäŸ¡ãäžæãããäžèœãããïŒãäºæž¬ããããã®ã¢ãã«ã
- ãµããŒããã¯ã¿ãŒãã·ã³ïŒSVMïŒïŒ åé¡ãšååž°ã®ããã®åŒ·åãªã¢ãã«ãè€éãªããŒã¿å ã®ãã¿ãŒã³ãç¹å®ããã®ã«é©ããŠããŸãã
- æ±ºå®æšãšã©ã³ãã ãã©ã¬ã¹ãïŒ è§£éã容æã§ãéç·åœ¢é¢ä¿ãåŠçã§ããããªãŒããŒã¹ã®ã¢ãã«ã
- ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒ éåžžã«éç·åœ¢ãªé¢ä¿ãåŠç¿ã§ããè€éãªã¢ãã«ãå€§èŠæš¡ãªããŒã¿ã»ãããšè€éãªãã¿ãŒã³ãåæããã®ã«é©ããŠããŸãããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ïŒRNNïŒããã³é·ã»çæèšæ¶ïŒLSTMïŒãããã¯ãŒã¯ã¯ãæç³»åããŒã¿ã®åæã«ç¹ã«é©ããŠããŸãã
- ã¢ã³ãµã³ãã«ã¡ãœããïŒ äºæž¬ç²ŸåºŠãšå ç¢æ§ãåäžãããããã«è€æ°ã®ã¢ãã«ãçµã¿åãããŸããäŸãšããŠã¯ããã®ã³ã°ãããŒã¹ãã£ã³ã°ïŒäŸïŒXGBoostãLightGBMãCatBoostïŒãã¹ã¿ããã³ã°ãªã©ããããŸãã
3.2. ã¢ãã«ãã¬ãŒãã³ã°ãšæ€èšŒ
ã¢ãã«ãéžæãããããéå»ã®ããŒã¿ã§ãã¬ãŒãã³ã°ããå¿ èŠããããŸããéåŠç¿ãé²ãããã«ãããŒã¿ããã¬ãŒãã³ã°ãæ€èšŒããã¹ãã»ããã«åå²ããããšãäžå¯æ¬ ã§ããéåŠç¿ãšã¯ãã¢ãã«ããã¬ãŒãã³ã°ããŒã¿ãé床ã«åŠç¿ããæªèŠã®ããŒã¿ã§ããã©ãŒãã³ã¹ãæªããªãããšã§ãã
- ãã¬ãŒãã³ã°ã»ããïŒ ã¢ãã«ã®ãã¬ãŒãã³ã°ã«äœ¿çšãããŸãã
- æ€èšŒã»ããïŒ ã¢ãã«ã®ãã€ããŒãã©ã¡ãŒã¿ã調æŽããéåŠç¿ãé²ãããã«äœ¿çšãããŸãããã€ããŒãã©ã¡ãŒã¿ã¯ãããŒã¿ããåŠç¿ãããã®ã§ã¯ãªãããã¬ãŒãã³ã°åã«èšå®ããããã©ã¡ãŒã¿ã§ãã
- ãã¹ãã»ããïŒ æªèŠã®ããŒã¿ã§ã®ã¢ãã«ã®æçµããã©ãŒãã³ã¹ãè©äŸ¡ããããã«äœ¿çšãããŸãã
ã¢ãã«æ€èšŒã®äžè¬çãªææ³ã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- ã¯ãã¹ããªããŒã·ã§ã³ïŒ ããŒã¿ãè€æ°ã®ãã©ãŒã«ãã«åå²ããããŸããŸãªãã©ãŒã«ãã®çµã¿åããã§ã¢ãã«ããã¬ãŒãã³ã°ããã³æ€èšŒããããšã§ãã¢ãã«ã®ããã©ãŒãã³ã¹ãè©äŸ¡ããææ³ã§ããKåå²ã¯ãã¹ããªããŒã·ã§ã³ã¯äžè¬çãªææ³ã§ãã
- ããã¯ãã¹ãïŒ éå»ã®ããŒã¿ã§ååŒæŠç¥ã®ããã©ãŒãã³ã¹ãã·ãã¥ã¬ãŒãããŸããããã¯ãã¹ãã¯ãååŒæŠç¥ã®åçæ§ãšãªã¹ã¯ãè©äŸ¡ããããã«äžå¯æ¬ ã§ãã
- ãŠã©ãŒã¯ãã©ã¯ãŒãæé©åïŒ å±¥æŽããŒã¿ã®ããŒãªã³ã°ãŠã£ã³ããŠã§ã¢ãã«ãå埩çã«ãã¬ãŒãã³ã°ããã³ãã¹ãããããšã«ãããååŒæŠç¥ãæé©åããææ³ã§ããããã¯ãéåŠç¿ãé²ããæŠç¥ã®å ç¢æ§ãåäžãããã®ã«åœ¹ç«ã¡ãŸãã
3.3. ã¢ãã«ãã¬ãŒãã³ã°ã«ãããã°ããŒãã«ãªèæ ®äºé
- ããŒã¿ã®å ¥æå¯èœæ§ïŒ æ€èšããŠããååžå Žã§ååãªéå»ããŒã¿ãå©çšå¯èœã§ããããšã確èªããŠãã ãããæ°èåžå Žã¯ããŒã¿ãéãããŠããå Žåããããã¢ãã«ã®ç²ŸåºŠã«åœ±é¿ãäžããå¯èœæ§ããããŸãã
- åžå Žã¬ãžãŒã ã·ããïŒ ã°ããŒãã«åžå Žã¯ç°ãªãã¬ãžãŒã ïŒäŸïŒåŒ·æ°åžå Žã匱æ°åžå Žãé«ãã©ãã£ãªãã£æéïŒãçµéšããŸãããã¬ãŒãã³ã°ããŒã¿ã¯ãã¢ãã«ãå€åããç¶æ³ã«é©å¿ã§ããããã«ããããã®ã·ãããåæ ããå¿ èŠããããŸãã
- èŠå¶å€æŽïŒ ååŒæŠç¥ã«å€§ããªåœ±é¿ãäžããå¯èœæ§ããããããããŸããŸãªåžå Žã®èŠå¶å€æŽãèæ ®ããŠãã ãããããšãã°ã空売ãã«é¢ããæ°ããèŠå¶ã¯ã空売ãããžã·ã§ã³ã«äŸåããæŠç¥ã®å¹æãå€ããå¯èœæ§ããããŸãã
4. æŠç¥éçºãšå®è£ ïŒã¢ãã«ããè¡åãž
AIã¢ãã«ã¯ãå®å šãªååŒã·ã¹ãã ã®äžèŠçŽ ã«ãããŸãããå ç¢ãªååŒæŠç¥ãéçºããããã广çã«å®è£ ããããšãåæ§ã«éèŠã§ãã
4.1. ååŒæŠç¥ã®å®çŸ©
ååŒæŠç¥ãšã¯ãè³ç£ã®å£²è²·ææãèŠå¶ããäžé£ã®ã«ãŒã«ã§ããååŒæŠç¥ã¯ãããŸããŸãªèŠå ã«åºã¥ããŠäœæã§ããŸããããã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- ãã¯ãã«ã«åæïŒ éå»ã®äŸ¡æ Œãšåºæ¥é«ããŒã¿ã«åºã¥ããŠååŒæ©äŒãç¹å®ããŸãã
- ãã¡ã³ãã¡ã³ã¿ã«åæïŒ äŒæ¥ã®è²¡åå¥å šæ§ãšãã¯ãçµæžææšã«åºã¥ããŠååŒæ©äŒãç¹å®ããŸãã
- ã»ã³ãã¡ã³ãåæïŒ æè³å®¶ã»ã³ãã¡ã³ããšãã¥ãŒã¹ã€ãã³ãã«åºã¥ããŠååŒæ©äŒãç¹å®ããŸãã
- è£å®ååŒïŒ ç°ãªãåžå Žã§ã®äŸ¡æ Œå·®ãå©çšããŸãã
- å¹³åååž°ïŒ äŸ¡æ Œãéå»ã®å¹³åã«æ»ããšããä»®å®ã«åºã¥ããŠååŒããŸãã
- ãã¬ã³ããã©ããŒïŒ æ¯é çãªãã¬ã³ãã®æ¹åã«æ²¿ã£ãŠååŒããŸãã
ç¹å®ã®æŠç¥ã®äŸã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- ãã¢ååŒïŒ çžé¢é¢ä¿ã«ããè³ç£ã®ãã¢ãç¹å®ããæŽå²çãªçžé¢é¢ä¿ããã®éžè±ã«åºã¥ããŠååŒããŸãã
- çµ±èšçè£å®ååŒïŒ çµ±èšã¢ãã«ã䜿çšããŠãäŸ¡æ Œèšå®ãã¹ã®ããè³ç£ãç¹å®ããæåŸ ãããäŸ¡æ Œåæã«åºã¥ããŠååŒããŸãã
- é«é »åºŠååŒïŒHFTïŒïŒ éåžžã«é«éã§å€§éã®æ³šæãå®è¡ããããããªäŸ¡æ Œå·®ãå©çšããŸãã
- ã¢ã«ãŽãªãºã å®è¡ïŒ ã¢ã«ãŽãªãºã ã䜿çšããŠãåžå Žãžã®åœ±é¿ãæå°éã«æããæ¹æ³ã§å€§éã®æ³šæãå®è¡ããŸãã
4.2. å®è£ ãšã€ã³ãã©ã¹ãã©ã¯ãã£
AIååŒã·ã¹ãã ã®å®è£ ã«ã¯ã倧éã®ããŒã¿ãåŠçããè¿ éãã€ç¢ºå®ã«ååŒãå®è¡ã§ããå ç¢ãªã€ã³ãã©ã¹ãã©ã¯ãã£ãå¿ èŠã§ããã€ã³ãã©ã¹ãã©ã¯ãã£ã®äž»èŠãªã³ã³ããŒãã³ãã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- ååŒãã©ãããã©ãŒã ïŒ ååŒæãžã®æ¥ç¶ãšååŒã®å®è¡ã®ããã®ãã©ãããã©ãŒã ãäŸãšããŠã¯ãInteractive BrokersãOANDAãIGãªã©ããããŸãã
- ããŒã¿ãã£ãŒãïŒ åžå ŽããŒã¿ã«ã¢ã¯ã»ã¹ããããã®ãªã¢ã«ã¿ã€ã ããŒã¿ãã£ãŒãã
- ã³ã³ãã¥ãŒãã£ã³ã°ã€ã³ãã©ã¹ãã©ã¯ãã£ïŒ AIã¢ãã«ã®å®è¡ãšååŒã®å®è¡ã®ããã®ãµãŒããŒãŸãã¯ã¯ã©ãŠãã³ã³ãã¥ãŒãã£ã³ã°ãªãœãŒã¹ãAmazon Web ServicesïŒAWSïŒãGoogle Cloud PlatformïŒGCPïŒãMicrosoft Azureãªã©ã®ã¯ã©ãŠããã©ãããã©ãŒã ã¯ãã¹ã±ãŒã©ãã«ã§ä¿¡é Œæ§ã®é«ãã³ã³ãã¥ãŒãã£ã³ã°ã€ã³ãã©ã¹ãã©ã¯ãã£ãæäŸããŸãã
- ããã°ã©ãã³ã°èšèªãšã©ã€ãã©ãªïŒ PythonãRãJavaãªã©ã®ããã°ã©ãã³ã°èšèªã¯ãAIååŒã·ã¹ãã ã®æ§ç¯ã«äžè¬çã«äœ¿çšãããŸããTensorFlowãPyTorchãscikit-learnãpandasãªã©ã®ã©ã€ãã©ãªã¯ãããŒã¿åæãæ©æ¢°åŠç¿ãã¢ã«ãŽãªãºã éçºã®ããã®ããŒã«ãæäŸããŸãã
- APIçµ±åïŒ APIïŒApplication Programming InterfacesïŒãä»ããŠAIã¢ãã«ãååŒãã©ãããã©ãŒã ã«æ¥ç¶ããŸãã
4.3. ãªã¹ã¯ç®¡çãšç£èŠ
ãªã¹ã¯ç®¡çã¯ãè³æ¬ãä¿è·ããAIååŒã·ã¹ãã ã®é·æçãªåç¶å¯èœæ§ã確ä¿ããããã«äžå¯æ¬ ã§ããäž»èŠãªãªã¹ã¯ç®¡çã®èæ ®äºé ã«ã¯ä»¥äžãå«ãŸããŸãïŒ
- ã¹ããããã¹æ³šæã®èšå®ïŒ ããžã·ã§ã³ãäžå®ã®æå€±ã¬ãã«ã«éãããšãã«èªåçã«éããããšã
- ããžã·ã§ã³ãµã€ãžã³ã°ïŒ ãªã¹ã¯ãæå°éã«æããããã«ãåååŒã®é©åãªãµã€ãºã決å®ããããšã
- åæ£ïŒ ãªã¹ã¯ã軜æžããããã«ãããŸããŸãªè³ç£ãåžå Žã«æè³ã忣ãããããšã
- ã·ã¹ãã ããã©ãŒãã³ã¹ã®ç£èŠïŒ åçæ§ããããŒããŠã³ãåçãªã©ã®äž»èŠãªææšã远跡ããŠãæœåšçãªåé¡ãç¹å®ããããšã
- ã¹ãã¬ã¹ãã¹ãïŒ æ¥µç«¯ãªåžå Žæ¡ä»¶äžã§ã®ååŒã·ã¹ãã ã®ããã©ãŒãã³ã¹ãã·ãã¥ã¬ãŒãããããšã
- ã³ã³ãã©ã€ã¢ã³ã¹ïŒ ååŒã·ã¹ãã ããã¹ãŠã®é¢é£èŠå¶ãéµå®ããŠããããšã確èªããããšã
4.4. ã°ããŒãã«ç¹æã®ãªã¹ã¯ç®¡çã®èæ ®äºé
- é貚ãªã¹ã¯ïŒ è€æ°ã®åœã§ååŒããå Žåãé貚ã®å€åã¯ãªã¿ãŒã³ã«å€§ããªåœ±é¿ãäžããå¯èœæ§ããããŸããé貚ãªã¹ã¯ã軜æžããããã«ãããžæŠç¥ãå®è£ ããŠãã ããã
- æ¿æ²»ãªã¹ã¯ïŒ ããåœã®æ¿æ²»çäžå®å®æ§ãæ¿ç倿Žã¯ãéèåžå Žã«åœ±é¿ãäžããå¯èœæ§ããããŸããæ¿æ²»çå±éãç£èŠããæŠç¥ãããã«å¿ããŠèª¿æŽããŠãã ããã
- æµåæ§ãªã¹ã¯ïŒ äžéšã®åžå Žã¯ä»ã®åžå Žãããæµåæ§ãäœãå Žåããããããžã·ã§ã³ãè¿ éã«éå§ãŸãã¯çµäºããããšãå°é£ã«ãªãå¯èœæ§ããããŸããåžå Žã®éžæãšããžã·ã§ã³ãµã€ãžã³ã°ã«ãããŠã¯æµåæ§ãèæ ®ããŠãã ããã
- èŠå¶ãªã¹ã¯ïŒ èŠå¶ã®å€æŽã¯ãååŒæŠç¥ã®åçæ§ã«åœ±é¿ãäžããå¯èœæ§ããããŸããèŠå¶ã®å€æŽã«ã€ããŠæ å ±ãå ¥æããå¿ èŠã«å¿ããŠæŠç¥ã調æŽããŠãã ããã
5. ã±ãŒã¹ã¹ã¿ãã£ãšäŸ
å°æçãªAIååŒã·ã¹ãã ã®å ·äœçãªè©³çްã¯ãå ¬ã«ã¯ã»ãšãã©å©çšã§ããŸããããã°ããŒãã«åžå Žå šäœã§æè³ããã³ååŒã«ãããAIã®æåããå¿çšã瀺ãäžè¬çãªäŸãšååã調ã¹ãããšãã§ããŸãã
5.1. å é²åžå Žã«ãããé«é »åºŠååŒïŒHFTïŒ
ç±³åœã欧å·ãªã©ã®åžå Žã«ãããHFTäŒæ¥ã¯ãAIã¢ã«ãŽãªãºã ãå©çšããŠãååŒæéã®ããããªäŸ¡æ Œå·®ãç¹å®ãããããæŽ»çšããŸãããããã®ã·ã¹ãã ã¯ããªã¢ã«ã¿ã€ã ã§å€§éã®åžå ŽããŒã¿ãåæããããªç§åäœã§ååŒãå®è¡ããŸããé«åºŠãªæ©æ¢°åŠç¿ã¢ãã«ã¯çæçãªäŸ¡æ Œå€åãäºæž¬ããã€ã³ãã©ã¹ãã©ã¯ãã£ã¯äœé å»¶æ¥ç¶ãšåŒ·åãªã³ã³ãã¥ãŒãã£ã³ã°ãªãœãŒã¹ã«äŸåããŠããŸãã
5.2. ã»ã³ãã¡ã³ãåæã䜿çšããæ°èåžå Žæ ªåŒæè³
æ°èåžå Žã§ã¯ãäŒçµ±çãªéèããŒã¿ãä¿¡é Œæ§ãäœãããŸãã¯å®¹æã«å ¥æã§ããªãå ŽåããããããAIãæŽ»çšããã»ã³ãã¡ã³ãåæã¯è²Žéãªåªäœæ§ãæäŸã§ããŸããAIã¢ã«ãŽãªãºã ã¯ããã¥ãŒã¹èšäºããœãŒã·ã£ã«ã¡ãã£ã¢ãçŸå°ã®åºçç©ãåæããããšã§ãæè³å®¶ã»ã³ãã¡ã³ããæž¬å®ããæœåšçãªåžå Žã®åããäºæž¬ã§ããŸããããšãã°ãã€ã³ããã·ã¢ã®çŸå°ãã¥ãŒã¹ãœãŒã¹ããåŸãããç¹å®ã®äŒæ¥ã«å¯Ÿããè¯å®çãªã»ã³ãã¡ã³ãã¯ãè²·ãã®æ©äŒã瀺ãå¯èœæ§ããããŸãã
5.3. ã°ããŒãã«ååŒæéã§ã®æå·é貚è£å®ååŒ
倿°ã®ååŒæãã°ããŒãã«ã«éå¶ãããŠããæå·é貚åžå Žã®æçåãããæ§è³ªã¯ãè£å®ååŒã®æ©äŒãçã¿åºããŸããAIã¢ã«ãŽãªãºã ã¯ãããŸããŸãªååŒæéã®äŸ¡æ Œãç£èŠããäŸ¡æ Œå·®ããå©çãåŸãããã«èªåçã«ååŒãå®è¡ã§ããŸããããã«ã¯ãè€æ°ã®ååŒæããã®ãªã¢ã«ã¿ã€ã ããŒã¿ãã£ãŒããååŒæåºæã®ãªã¹ã¯ãèæ ®ããé«åºŠãªãªã¹ã¯ç®¡çã·ã¹ãã ãããã³èªåå®è¡æ©èœãå¿ èŠã§ãã
5.4. ååŒãããã®äŸïŒæŠå¿µïŒ
Pythonã䜿çšããAIæèŒååŒãããã®æ§é ã®ç°¡åãªäŸïŒ
```python #æŠå¿µã³ãŒã - å®éã®ååŒã«ã¯äœ¿çšã§ããŸãããå®å šãªèªèšŒãšæ éãªå®è£ ãå¿ èŠã§ã import yfinance as yf import pandas as pd from sklearn.linear_model import LinearRegression # 1. ããŒã¿ååŸ def get_stock_data(ticker, period="1mo"): data = yf.download(ticker, period=period) return data # 2. ç¹åŸŽéãšã³ãžãã¢ãªã³ã° def create_features(data): data['SMA_5'] = data['Close'].rolling(window=5).mean() data['SMA_20'] = data['Close'].rolling(window=20).mean() data['RSI'] = calculate_rsi(data['Close']) data.dropna(inplace=True) return data def calculate_rsi(prices, period=14): delta = prices.diff() up, down = delta.clip(lower=0), -1*delta.clip(upper=0) roll_up1 = up.ewm(span=period).mean() roll_down1 = down.ewm(span=period).mean() RS = roll_up1 / roll_down1 RSI = 100.0 - (100.0 / (1.0 + RS)) return RSI # 3. ã¢ãã«ãã¬ãŒãã³ã° def train_model(data): model = LinearRegression() X = data[['SMA_5', 'SMA_20', 'RSI']] y = data['Close'] model.fit(X, y) return model # 4. äºæž¬ãšååŒããžã㯠def predict_and_trade(model, latest_data): # latest_dataãããŒã¿ãã¬ãŒã ã§ããããšãç¢ºèª if isinstance(latest_data, pd.Series): latest_data = pd.DataFrame(latest_data).transpose() X_latest = latest_data[['SMA_5', 'SMA_20', 'RSI']] prediction = model.predict(X_latest)[0] # éåžžã«åçŽãªååŒããžã㯠current_price = latest_data['Close'].iloc[-1] if prediction > current_price + (current_price * 0.01): # 1%ã®äžæãäºæž¬ print(f"BUY {ticker} at {current_price}") # å®éã®ã·ã¹ãã ã§ã¯ãè²·ãæ³šæãçºæ³šããŸã elif prediction < current_price - (current_price * 0.01): # 1%ã®äžèœãäºæž¬ print(f"SELL {ticker} at {current_price}") # å®éã®ã·ã¹ãã ã§ã¯ãå£²ãæ³šæãçºæ³šããŸã else: print("HOLD") # å®è¡ ticker = "AAPL" # Appleæ ª data = get_stock_data(ticker) data = create_features(data) model = train_model(data) # ææ°ããŒã¿ãååŸ latest_data = get_stock_data(ticker, period="1d") latest_data = create_features(latest_data) predict_and_trade(model, latest_data) print("Finished") ```éèŠãªå 責äºé ïŒ ãã®Pythonã³ãŒãã¯ãã¢ã³ã¹ãã¬ãŒã·ã§ã³ç®çã®ã¿ã§ãããå®éã®ååŒã«äœ¿çšããããšã¯ã§ããŸãããå®éã®ååŒã·ã¹ãã ã«ã¯ãå ç¢ãªãšã©ãŒåŠçãã»ãã¥ãªãã£å¯Ÿçããªã¹ã¯ç®¡çãããã³èŠå¶éµå®ãå¿ èŠã§ãããã®ã³ãŒãã¯éåžžã«åºæ¬çãªç·åœ¢ååž°ã¢ãã«ãšåçŽãªååŒããžãã¯ã䜿çšããŠããŸããååŒæŠç¥ãå±éããåã«ãããã¯ãã¹ããšåŸ¹åºçãªè©äŸ¡ãäžå¯æ¬ ã§ãã
6. å«ççé æ ®ãšèª²é¡
æè³ããã³ååŒã«ãããAIã®å©çšå¢å ã¯ãããã€ãã®å«ççé æ ®ãšèª²é¡ãåŒãèµ·ãããŸãã
- å ¬å¹³æ§ãšãã€ã¢ã¹ïŒ AIã¢ãã«ã¯ãããŒã¿å ã®æ¢åã®ãã€ã¢ã¹ãæ°žç¶åããã³å¢å¹ ããå¯èœæ§ããããäžå ¬å¹³ãŸãã¯å·®å¥çãªçµæã«ã€ãªããå¯èœæ§ããããŸããããšãã°ããã¬ãŒãã³ã°ããŒã¿ãç¹å®ã®ã°ã«ãŒãã«å¯Ÿããéå»ã®ãã€ã¢ã¹ãåæ ããŠããå Žåãã¢ãã«ã¯ãã€ã¢ã¹ã®ããã£ãæè³æ±ºå®ãäžãå¯èœæ§ããããŸãã
- éææ§ãšèª¬æå¯èœæ§ïŒ å€ãã®AIã¢ãã«ãç¹ã«ãã£ãŒãã©ãŒãã³ã°ã¢ãã«ã¯ãã©ãã¯ããã¯ã¹ã§ãããæææ±ºå®ã«ã©ã®ããã«å°éããããçè§£ããããšãå°é£ã§ãããã®éææ§ã®æ¬ åŠã¯ããšã©ãŒããã€ã¢ã¹ãç¹å®ããŠä¿®æ£ããããšãå°é£ã«ããå¯èœæ§ããããŸãã
- åžå ŽæäœïŒ AIã¢ã«ãŽãªãºã ã¯ãããšãã°äººå·¥çãªååŒéãäœæããããåœæ å ±ãæ¡æ£ãããããããšã§ãåžå Žãæäœããããã«äœ¿çšãããå¯èœæ§ããããŸãã
- éçšåªå€±ïŒ æè³ããã³ååŒã¿ã¹ã¯ã®èªååã¯ãéèå°éå®¶ã®éçšåªå€±ã«ã€ãªããå¯èœæ§ããããŸãã
- ããŒã¿ãã©ã€ãã·ãŒïŒ AIã¢ãã«ã§ã®å人ããŒã¿ã®äœ¿çšã¯ãããŒã¿ãã©ã€ãã·ãŒãšã»ãã¥ãªãã£ã«é¢ããæžå¿µãåŒãèµ·ãããŸãã
- ã¢ã«ãŽãªãºã ã®å ±è¬ïŒ ç¬ç«ããAIååŒã·ã¹ãã ã¯ãæç€ºçãªããã°ã©ãã³ã°ãªãã«å ±è¬ãåŠç¿ããåç«¶äºçãªè¡åãåžå Žæäœã«ã€ãªããå¯èœæ§ããããŸãã
7. æè³ããã³ååŒã«ãããAIã®æªæ¥
AIã¯ãæè³ããã³ååŒã®æªæ¥ã«ãããŠãŸããŸãéèŠãªåœ¹å²ãæããæºåãã§ããŠããŸããAIæè¡ã鲿©ãç¶ããã«ã€ããŠã以äžã®ãããªããšãæåŸ ã§ããŸãïŒ
- ããæŽç·ŽãããAIã¢ãã«ïŒ æ°ãããã匷åãªAIã¢ãã«ãéçºãããæè³å®¶ããã埮åŠãªãã¿ãŒã³ãç¹å®ããããé«ã粟床ã§åžå Žã®åããäºæž¬ã§ããããã«ãªããŸãã
- èªååã®å¢å ïŒ ããå€ãã®æè³ããã³ååŒã¿ã¹ã¯ãèªååããã人éã®å°éå®¶ã¯ããé«åºŠãªæŠç¥çæææ±ºå®ã«éäžã§ããããã«ãªããŸãã
- ããŒãœãã©ã€ãºãããæè³ã¢ããã€ã¹ïŒ AIã¯ãæè³å®¶ã®åã ã®ããŒãºãšå¥œã¿ã«åãããããŒãœãã©ã€ãºãããæè³ã¢ããã€ã¹ãæäŸããããã«äœ¿çšãããŸãã
- ãªã¹ã¯ç®¡çã®æ¹åïŒ AIã¯ããªã¹ã¯ããã广çã«ç¹å®ããã³ç®¡çããããã«äœ¿çšãããŸãã
- æè³ã®æ°äž»åïŒ AIæèŒã®æè³ãã©ãããã©ãŒã ã¯ãããå¹ åºãæè³å®¶ã«ãšã£ãŠããã¢ã¯ã»ã¹ãããããªããé«åºŠãªæè³æŠç¥ãžã®ã¢ã¯ã»ã¹ãæ°äž»åãããŸãã
- ãããã¯ãã§ãŒã³ãšã®çµ±åïŒ AIã¯ããããã¯ãã§ãŒã³æè¡ãšçµ±åãããããéæã§å¹ççãªååŒã·ã¹ãã ãäœæãããå¯èœæ§ãé«ãã§ãã
8. çµè«
AIæè³ã»ååŒã·ã¹ãã ã®æ§ç¯ã¯ãè€éã§å°é£ãªäºæ¥ã§ãããæœåšçãªå ±é ¬ã¯å€§ããã§ããAIãšéèåžå Žã®åºæ¬ãçè§£ããããŒã¿ã广çã«ååŸããã³ååŠçããå ç¢ãªAIã¢ãã«ãæ§ç¯ããã³ãã¬ãŒãã³ã°ããå¥å šãªååŒæŠç¥ãå®è£ ãããªã¹ã¯ãæ éã«ç®¡çããããšã«ãããæè³å®¶ããã³ãã¬ãŒããŒã¯AIã®åãæŽ»çšããŠãã°ããŒãã«åžå Žã§è²¡åç®æšãéæããããšãã§ããŸããå«ççèæ ®äºé ãããã²ãŒãããæ°èæè¡ãææ°ã®ç¶æ ã«ä¿ã€ããšã¯ããã®æ¥éã«é²åããåéã§ã®é·æçãªæåã«ãšã£ãŠæ¥µããŠéèŠã§ããç¶ç¶çãªåŠç¿ãé©å¿ãããã³è²¬ä»»ããã€ãããŒã·ã§ã³ãžã®ã³ãããã¡ã³ãã¯ãæè³ããã³ååŒã«ãããAIã®å¯èœæ§ãæå€§éã«åŒãåºãããã«äžå¯æ¬ ã§ãã